Gaining New Fields of Application for OOP: the Parallel Evolutionary Algorithm Case
نویسنده
چکیده
Object Oriented Programming (OOP) is continuously gaining new domains of application. We address in this work a study of several important design and implementation issues in one of such new domains: parallel evolutionary algorithms (PEAs). These algorithms are heuristics aimed at performing search, optimization, and machine learning tasks. We will identify the potential and actual advantages of using OOP in such a field of application, as well as we propose a class design for solving complex real-world problems with PEAs. Besides the methodological and practical outcomes, some results showing the efficiency and flexibility of the resulting OOP-PEA systems are offered herein. We conclude that OOP allows quick PEA prototyping, integration of new techniques within the PEA, and easy cooperation with other techniques in parallel, all of this without reducing the efficiency of the resulting PEA.
منابع مشابه
Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملDeveloping Adaptive Differential Evolution as a New Evolutionary Algorithm, Application in Optimization of Chemical Processes
متن کامل
Pareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملطراحی و آموزش شبکه های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت های موازی
Application of artificial neural networks (ANN) in areas such as classification of images and audio signals shows the ability of this artificial intelligence technique for solving practical problems. Construction and training of ANNs is usually a time-consuming and hard process. A suitable neural model must be able to learn the training data and also have the generalization ability. In this pap...
متن کامل